Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537139

RESUMO

Wheat yellow (stripe) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat worldwide. Pst populations are composed of multiple genetic groups, each carrying one or more races characterized by different avirulence/virulence combinations. Since the severe epidemics in 2017, yellow rust has become the most economically important wheat foliar disease in Uruguay. A set of 124 Pst isolates collected from wheat fields in Uruguay between 2017 and 2021 were characterized phenotypically and 27 of those isolates were subsequently investigated in-depth by additional molecular genotyping and race phenotyping analyses. Three genetic groups were identified, i.e., PstS7, PstS10 and PstS13, the latter being the most prevalent. Two races previously reported in Europe, Warrior (PstS7) and Benchmark (PstS10), were detected in four and two isolates, respectively. A third race known as Triticale2015 (PstS13), first detected in Europe in 2015 and in Argentina in 2017, was detected at several locations. Additional virulence to Yr3, Yr17, Yr25, Yr27 or Yr32 was detected in three new race variants within PstS13. The identification of these new races, which have not been reported outside South America, provides strong evidence of the local evolution of virulence in Pst during the recent epidemic years.

2.
Front Plant Sci ; 15: 1306591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304738

RESUMO

Rye (Secale cereale L.) is an important cereal crop used for food, beverages, and feed, especially in North-Eastern Europe. While rye is generally more tolerant to biotic and abiotic stresses than other cereals, it still can be infected by several diseases, including scald caused by Rhynchosporium secalis. The aims of this study were to investigate the genetic architecture of scald resistance, to identify genetic markers associated with scald resistance, which could be used in breeding of hybrid rye and to develop a model for genomic prediction for scald resistance. Four datasets with records of scald resistance on a population of 251 hybrid winter rye lines grown in 2 years and at 3 locations were used for this study. Four genomic models were used to obtain variance components and heritabilities of scald resistance. All genomic models included additive genetic effects of the parental components of the hybrids and three of the models included additive-by-additive epistasis and/or dominance effects. All models showed moderate to high broad sense heritabilities in the range of 0.31 (SE 0.05) to 0.76 (0.02). The model without non-additive genetic effects and the model with dominance effects had moderate narrow sense heritabilities ranging from 0.24 (0.06) to 0.55 (0.08). None of the models detected significant non-additive genomic variances, likely due to a limited data size. A genome wide association study was conducted to identify markers associated with scald resistance in hybrid winter rye. In three datasets, the study identified a total of twelve markers as being significantly associated with scald resistance. Only one marker was associated with a major quantitative trait locus (QTL) influencing scald resistance. This marker explained 11-12% of the phenotypic variance in two locations. Evidence of genotype-by-environment interactions was found for scald resistance between one location and the other two locations, which suggested that scald resistance was influenced by different QTLs in different environments. Based on the results of the genomic prediction models and GWAS, scald resistance seems to be a quantitative trait controlled by many minor QTL and one major QTL, and to be influenced by genotype-by-environment interactions.

3.
Front Plant Sci ; 14: 1322406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38293628

RESUMO

The comeback of wheat stem rust in Europe, caused by Puccinia graminis f. sp. tritici, and the prevalence of the alternate (sexual) host in local areas have recently regained attention as a potential threat to European wheat production. The aim of this study was to investigate a potential epidemiological link between the aecia found on an indigenous barberry species and stem rust infections on nearby cereals and grasses. Aecial infections collected from Berberis vulgaris subsp. seroi were inoculated on a panel of susceptible genotypes of major cereal crop species. In total, 67 stem rust progeny isolates were recovered from wheat (51), barley (7), and rye (9), but none from oat, indicating the potential of barberry derived isolates to infect multiple cereals. Molecular genotyping of the progeny isolates and 20 cereal and grass stem rust samples collected at the same locations and year, revealed a clear genetic relatedness between the progeny isolated from barberry and the stem rust infections found on nearby cereal and grass hosts. Analysis of Molecular Variance indicated that variation between the stem rust populations accounted for only 1%. A Principal Components Analysis using the 62 detected multilocus genotypes also demonstrated a low degree of genetic variation among isolates belonging to the two stem rust populations. Lastly, pairwise comparisons based on fixation index (Fst), Nei's genetic distances and number of effective migrants (Nm) revealed low genetic differentiation and high genetic exchange between the two populations. Our results demonstrated a direct epidemiological link and functionality of an indigenous barberry species as the sexual host of P. graminis in Spain, a factor that should be considered when designing future strategies to prevent stem rust in Europe and beyond.

4.
Front Genet ; 13: 988031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246643

RESUMO

The increased emergence of cereal stem rust in southern and western Europe, caused by the pathogen Puccinia graminis, and the prevalence of alternate (sexual) host, Berberis species, have regained attention as the sexual host may serve as source of novel pathogen variability that may pose a threat to cereal supply. The main objective of the present study was to investigate the functional role of Berberis species in the current epidemiological situation of cereal stem rust in Europe. Surveys in 11 European countries were carried out from 2018 to 2020, where aecial infections from five barberry species were collected. Phylogenetic analysis of 121 single aecial clusters of diverse origin using the elongation factor 1-α gene indicated the presence of different special forms (aka formae speciales) of P. graminis adapted to different cereal and grass species. Inoculation studies using aecial clusters from Spain, United Kingdom, and Switzerland resulted in 533 stem rust isolates sampled from wheat, barley, rye, and oat, which confirmed the presence of multiple special forms of P. graminis. Microsatellite marker analysis of a subset of 192 sexually-derived isolates recovered on wheat, barley and rye from the three populations confirmed the generation of novel genetic diversity revealed by the detection of 135 multilocus genotypes. Discriminant analysis of principal components resulted in four genetic clusters, which grouped at both local and country level. Here, we demonstrated that a variety of Berberis species may serve as functional alternate hosts for cereal stem rust fungi and highlights the increased risks that the sexual cycle may pose to cereal production in Europe, which calls for new initiatives within rust surveillance, epidemiological research and resistance breeding.

5.
Plant Pathol ; 71(5): 1174-1184, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35915821

RESUMO

Stem rust, caused by Puccinia graminis, is a destructive group of diseases. The pathogen uses Berberis species as alternate hosts to complete its life cycle. B. vulgaris and the endemic species B. hispanica and B. garciae are present in Spain. The objective of this study was to investigate the functionality of the indigenous barberry as alternate hosts. Field surveys were conducted in 2018 and 2019 in Huesca, Teruel and Albacete provinces of Spain. Aecial samples on barberry were analysed via infection assays and DNA analysis. B. garciae was predominant in Huesca and Teruel provinces, often found in the field margins of cereal crops. Aecial infections on B. garciae were observed in May and uredinial infections on cereal crops in June. Scattered B. hispanica bushes were occasionally found near cereal crops in Albacete, where aecial infections on B. hispanica were observed in June when most cereal crops were mature. Infection assays using aeciospores resulted in stem rust infections on susceptible genotypes of wheat, barley, rye and oat, indicating the presence of the sexual cycle for P. graminis f. sp. tritici, f. sp. secalis and f. sp. avenae. Sequence analyses from aecial samples supported this finding as well as the presence of Puccinia brachypodii. This study provides the first evidence that indigenous Berberis species play an active role in the sexual cycle of P. graminis under natural conditions in Spain.

6.
Front Plant Sci ; 13: 882440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720526

RESUMO

The objective of this study was to investigate the re-emergence of a previously important crop pathogen in Europe, Puccinia graminis f.sp. tritici, causing wheat stem rust. The pathogen has been insignificant in Europe for more than 60 years, but since 2016 it has caused epidemics on both durum wheat and bread wheat in local areas in southern Europe, and additional outbreaks in Central- and West Europe. The prevalence of three distinct genotypes/races in many areas, Clade III-B (TTRTF), Clade IV-B (TKTTF) and Clade IV-F (TKKTF), suggested clonal reproduction and evolution by mutation within these. None of these genetic groups and races, which likely originated from exotic incursions, were detected in Europe prior to 2016. A fourth genetic group, Clade VIII, detected in Germany (2013), was observed in several years in Central- and East Europe. Tests of representative European wheat varieties with prevalent races revealed high level of susceptibility. In contrast, high diversity with respect to virulence and Simple Sequence Repeat (SSR) markers were detected in local populations on cereals and grasses in proximity to Berberis species in Spain and Sweden, indicating that the alternate host may return as functional component of the epidemiology of wheat stem rust in Europe. A geographically distant population from Omsk and Novosibirsk in western Siberia (Russia) also revealed high genetic diversity, but clearly different from current European populations. The presence of Sr31-virulence in multiple and highly diverse races in local populations in Spain and Siberia stress that virulence may emerge independently when large geographical areas and time spans are considered and that Sr31-virulence is not unique to Ug99. All isolates of the Spanish populations, collected from wheat, rye and grass species, were succesfully recovered on wheat, which underline the plasticity of host barriers within P. graminis. The study demonstrated successful alignment of two genotyping approaches and race phenotyping methodologies employed by different laboratories, which also allowed us to line up with previous European and international studies of wheat stem rust. Our results suggest new initiatives within disease surveillance, epidemiological research and resistance breeding to meet current and future challenges by wheat stem rust in Europe and beyond.

7.
Plant Dis ; 106(2): 701-710, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34633239

RESUMO

Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici, is a major threat to wheat (Triticum spp.) production worldwide. The objective of this study was to determine the virulence of P. striiformis f. sp. tritici races prevalent in the main wheat growing regions of Kenya, which includes Mt. Kenya, Eastern Kenya, and the Rift Valley (Central, Southern, and Northern Rift). Fifty P. striiformis f. sp. tritici isolates collected from 1970 to 1992 and from 2009 to 2014 were virulence phenotyped with stripe rust differential sets, and 45 isolates were genotyped with sequence characterized amplified region (SCAR) markers to differentiate the isolates and identify aggressive strains PstS1 and PstS2. Virulence corresponding to stripe rust resistance genes Yr1, Yr2, Yr3, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, and Yr27 and the seedling resistance in genotype Avocet S were detected. Ten races were detected in the P. striiformis f. sp. tritici samples obtained from 1970 to 1992, and three additional races were detected from 2009 to 2014, with a single race being detected in both periods. The SCAR markers detected both Pst1 and Pst2 strains in the collection. Increasing P. striiformis f. sp. tritici virulence was found in the Kenyan P. striiformis f. sp. tritici population, and different P. striiformis f. sp. tritici race groups were found to dominate different wheat growing regions. Moreover, recent P. striiformis f. sp. tritici races in East Africa indicated possible migration of some race groups into Kenya from other regions. This study is important in elucidating P. striiformis f. sp. tritici evolution and virulence diversity and useful in breeding wheat cultivars with effective resistance to stripe rust.


Assuntos
Doenças das Plantas , Triticum , Quênia , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Puccinia , Triticum/microbiologia , Virulência/genética
8.
Front Plant Sci ; 11: 570863, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552092

RESUMO

Wheat (Triticum aestivum L.) is one of the world's staple food crops and one of the most devastating foliar diseases attacking wheat is powdery mildew (PM). In Denmark only a few specific fungicides are available for controlling PM and the use of resistant cultivars is often recommended. In this study, two Chinese wheat landraces and two synthetic hexaploid wheat lines were used as donors for creating four multi-parental populations with a total of 717 individual lines to identify new PM resistance genetic variants. These lines and the nine parental lines (including the elite cultivars used to create the populations) were genotyped using a 20 K Illumina SNP chip, which resulted in 8,902 segregating single nucleotide polymorphisms for assessment of the population structure and whole genome association study. The largest genetic difference among the lines was between the donors and the elite cultivars, the second largest genetic difference was between the different donors; a difference that was also reflected in differences between the four multi-parental populations. The 726 lines were phenotyped for PM resistance in 2017 and 2018. A high PM disease pressure was observed in both seasons, with severities ranging from 0 to >50%. Whole genome association studies for genetic variation in PM resistance in the populations revealed significant markers mapped to either chromosome 2A, B, or D in each of the four populations. However, linkage disequilibrium between these putative quantitative trait loci (QTL) were all above 0.80, probably representing a single QTL. A combined analysis of all the populations confirmed this result and the most associated marker explained 42% of the variation in PM resistance. This study gives both knowledge about the resistance as well as molecular tools and plant material that can be utilised in marker-assisted selection. Additionally, the four populations produced in this study are highly suitable for association studies of other traits than PM resistance.

9.
Methods Mol Biol ; 1659: 29-40, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28856638

RESUMO

A procedure for virulence phenotyping of isolates of yellow (stripe) rust using spray inoculation of wheat seedlings by spores suspended in an engineered fluid, Novec™ 7100, is presented. Differential sets consisting of near-isogenic Avocet lines, selected lines from the "World" and "European" sets, and additional varieties showing race-specificity facilitate a robust assessment of race, irrespectively of geographical and evolutionary origin of isolates. A simple procedure for purification of samples consisting of multiple races is also presented.


Assuntos
Basidiomycota/genética , Doenças das Plantas/microbiologia , Plântula/microbiologia , Triticum/microbiologia , Basidiomycota/patogenicidade , Basidiomycota/fisiologia , Resistência à Doença , Genótipo , Técnicas de Genotipagem/métodos , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Plântula/genética , Triticum/genética , Virulência
10.
Front Plant Sci ; 8: 1057, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28676811

RESUMO

We investigated whether the recent worldwide epidemics of wheat yellow rust were driven by races of few clonal lineage(s) or populations of divergent races. Race phenotyping of 887 genetically diverse Puccinia striiformis isolates sampled in 35 countries during 2009-2015 revealed that these epidemics were often driven by races from few but highly divergent genetic lineages. PstS1 was predominant in North America; PstS2 in West Asia and North Africa; and both PstS1 and PstS2 in East Africa. PstS4 was prevalent in Northern Europe on triticale; PstS5 and PstS9 were prevalent in Central Asia; whereas PstS6 was prevalent in epidemics in East Africa. PstS7, PstS8 and PstS10 represented three genetic lineages prevalent in Europe. Races from other lineages were in low frequencies. Virulence to Yr9 and Yr27 was common in epidemics in Africa and Asia, while virulence to Yr17 and Yr32 were prevalent in Europe, corresponding to widely deployed resistance genes. The highest diversity was observed in South Asian populations, where frequent recombination has been reported, and no particular race was predominant in this area. The results are discussed in light of the role of invasions in shaping pathogen population across geographical regions. The results emphasized the lack of predictability of emergence of new races with high epidemic potential, which stresses the need for additional investments in population biology and surveillance activities of pathogens on global food crops, and assessments of disease vulnerability of host varieties prior to their deployment at larger scales.

11.
Fungal Biol ; 121(6-7): 541-549, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28606349

RESUMO

An isolate of the fungus Puccinia striiformis, causing yellow (stripe) rust on cereals and grasses, was selfed on the alternate (sexual) host, Berberis vulgaris. This enabled us to investigate genetic variability of progeny isolates within and among aecia. Nine aecial clusters each consisting of an aecium (single aecial cup) and nine clusters containing multiple aecial cups were selected from 18 B. vulgaris leaves. Aeciospores from each cluster were inoculated on susceptible wheat seedlings and 64 progeny isolates were recovered. Molecular genotyping using 37 simple sequence repeat markers confirmed the parental origin of all progeny isolates. Thirteen molecular markers, which were heterozygous in the parental isolate, were used to analyse genetic diversity within and among aecial cups. The 64 progeny isolates resulted in 22 unique recombinant multilocus genotypes and none of them were resampled in different aecial clusters. Isolates derived from a single cup were always of the same genotype whereas isolates originating from clusters containing up to nine aecial cups revealed one to three genotypes per cluster. These results implied that each aecium was the result of a successful fertilization in a corresponding pycnium and that an aecium consisted of genetically identical aeciospores probably multiplied via repetitive mitotic divisions. Furthermore, the results suggested that aecia within a cluster were the result of independent fertilization events often involving genetically different pycniospores. The application of molecular markers represented a major advance in comparison to previous studies depending on phenotypic responses on host plants. The study allowed significant conclusions about fundamental aspects of the biology and genetics of an important cereal rust fungus.


Assuntos
Basidiomycota/classificação , Basidiomycota/genética , Berberis/microbiologia , Variação Genética , Doenças das Plantas/microbiologia , Triticum/microbiologia , Basidiomycota/isolamento & purificação , Análise por Conglomerados , Genótipo , Tipagem Molecular , Técnicas de Tipagem Micológica
12.
Fungal Genet Biol ; 70: 77-85, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25042987

RESUMO

An isolate of the basidiomycete Puccinia striiformis, which causes yellow (stripe) rust on wheat, was selfed on the newly discovered alternate host, Berberis vulgaris. This allowed a study of the segregation of molecular markers and virulence in the progeny isolates, and of the development of fungal sexual structures and spore forms. Pycnia and aecia were obtained after inoculation of B. vulgaris with basidiospores resulting from germinating teliospores from infected wheat leaves. Subsequent inoculation of wheat with aeciospores from bulked aecia resulted in 16 progeny isolates of the S1 generation. Genotyping with 42 simple sequence repeat (SSR) markers confirmed a parental origin of progeny isolates. Of the 42 analyzed loci, 15 were heterozygous in the parental isolate and 14 revealed segregation in the progenies. This resulted in 11 new multilocus genotypes (MLGs), which confirmed segregation following sexual reproduction. Additionally, parental and progeny isolates were phenotyped using a genetic stock of wheat genotypes representing 21 resistance genes. All S1 progeny isolates had virulence for 14 out of 15 loci where the parental isolate was virulent. This was consistent with the hypothesis that virulence in plant pathogens is often recessive to avirulence, i.e., only expressed in a homozygous state. Furthermore, no segregation was observed for five out of six loci, for which the parental isolate had an avirulent phenotype. The results for one of the two segregating virulence/avirulence loci suggested that the parental isolate was heterozygous with Avr alleles resulting in different but clearly avirulent phenotypes. The other locus indicated that additional genes modifying the phenotypic expression of avirulence were involved.


Assuntos
Basidiomycota/genética , Berberis/microbiologia , Recombinação Genética , Triticum/microbiologia , Basidiomycota/patogenicidade , Genótipo , Repetições de Microssatélites , Esporos Fúngicos , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...